China supplier Cam Follower Track Roller Bearing Kr19 connecting rod bearing

Product Description

KRV16PP; KR16PP; Bolted Needle Roller Bearings KRVE16PP; KRE16PP; needle roller bearing with eccentric sleeve

KR40PP(X) Bolt bearing with retainer KRE40PP (X) with eccentric sleeve bolt roller KRV40PP(X) retainerless (full complement) bolt
bearing KRVE40PP (X) without retainer (full complement) with eccentric sleeve bolt roller The above bearing outer ring needle
roller material is bearing steel (Gcr15) The screw is 20 chrome molybdenum (20CrMo) Supplied with nut, oil nozzle, oil plug
KR16PP KRV16PP KRVE16PP CF6UU
KR19PP KRV19PP KRVE19PP CF8UU
KR22PP KRV22PP KRVE22PP CF10UU
KR26PP KRV26PP KRVE26PP CF10-1UU
KR30PP KRV30PP KRVE30PP CF12UU
KR32PP KRV32PP KRVE32PP CF12-1UU
KR35PP KRV35PP KRVE35PP CF16UU
KR40PP KRV40PP KRVE40PP CF18UU
KR47PP KRV47PP KRVE47PP CF20-1UU
KR52PP KRV52PP KRVE52PP CF20UU
KR62PP KRV62PP KRVE62PP CF24UU
KR72PP KRV72PP KRVE72PP CF24-1UU
KR80PP KRV80PP KRVE80PP CF30UU
KR85PP KRV85PP KRVE85PP CF30-1UU
KR90PP KRV90PP KRVE90PP CF30-2UU

Product name

Needle roller bearing Cam follower roller on sell KR/KRV/KRVE/KRE/CF CF30 KR80

Model No.

Needle roller bearing Cam follower roller on sell KR/KRV/KRVE/KRE/CF CF30 KR80

Bearing Type

Stud Type Cam Follower and Track Roller

Bearing Material

Chrome Steel GCr15

Precision

P0 P6 P5 P4 P2

Keywords

Cam Follower and Track Roller KRVE

Application

Cam mechanisms and linear motion of transfer machines

Shipment

Lead time: 2-3 days for stock; 7-20 days for customized.
Packing: Plastic bag/middle box+Carton+Wooden Case+Wooden Pallet
Delivery: by sea/air/express(Fedex, UPS, TNT, DHL ect)

Services

1. Factory price & High quality control2. Mass stock & Fast Delivery
3. Small Order accepted & OEM service
4. Quick Response & After sales service

   
   

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: N
Type: Wheel Hub Bearing
Material: Stainless Steel
Tolerance: P6
Certification: ISO9001
Transport Package: Industrial Package
Customization:
Available

|

Customized Request

track bearing

What are the benefits of using self-lubricating or maintenance-free track bearings?

Using self-lubricating or maintenance-free track bearings can offer several significant benefits in terms of convenience, performance, and cost-effectiveness. Let’s explore the advantages of utilizing self-lubricating or maintenance-free track bearings:

  • Elimination of External Lubrication: One of the primary advantages of self-lubricating or maintenance-free track bearings is that they eliminate the need for external lubrication. These bearings are pre-lubricated with a solid lubricant or have a built-in lubrication system that provides a continuous supply of lubrication to the bearing surfaces. This eliminates the requirement for manual lubrication or periodic re-lubrication, saving time and effort in maintenance tasks.
  • Extended Service Life: Self-lubricating or maintenance-free track bearings are designed to provide long service life. The presence of a solid lubricant or a self-lubricating material within the bearing helps reduce friction, wear, and the risk of surface damage. This results in improved durability and extended service life, reducing the frequency of bearing replacements and downtime for maintenance.
  • Reduced Contamination and Cleanliness: External lubricants, such as grease or oil, can attract and accumulate contaminants, such as dust, dirt, or debris. In contrast, self-lubricating or maintenance-free track bearings minimize the risk of contamination since they do not require additional lubricants. This helps maintain a cleaner operating environment and reduces the potential for bearing failure due to contamination-related issues.
  • Improved Reliability and Performance: Self-lubricating or maintenance-free track bearings offer consistent and reliable performance throughout their service life. The presence of an effective lubrication system ensures proper lubrication even under demanding operating conditions, such as high temperatures or high loads. This contributes to smoother and more predictable motion, reduced friction, and enhanced overall performance of the machinery or equipment.
  • Cost Savings: While self-lubricating or maintenance-free track bearings may have a higher initial cost compared to standard bearings, they can result in cost savings over the long term. The elimination of manual lubrication and the extended service life of these bearings reduce maintenance requirements, labor costs, and the need for lubrication supplies. Additionally, the increased reliability and performance can minimize downtime and associated production losses.
  • Ease of Installation: Self-lubricating or maintenance-free track bearings are typically designed for easy installation. They often come pre-assembled, pre-lubricated, or with integral lubrication systems, simplifying the installation process. This can save time and effort during initial setup or replacement of bearings in machinery or equipment.

Overall, self-lubricating or maintenance-free track bearings offer the advantages of reduced maintenance, extended service life, improved reliability, and cost savings. These bearings are particularly beneficial in applications where regular lubrication is challenging, time-consuming, or not feasible, or in environments where contamination control is critical.

track bearing

Are there potential challenges or limitations in using track bearings in specific industries?

While track bearings are widely used in various industries for their ability to support linear motion and handle heavy loads, there can be potential challenges and limitations associated with their use in specific industries. Here’s a detailed explanation:

1. Contamination and Harsh Environments:

Industries such as mining, construction, and agriculture often operate in harsh environments with high levels of contamination, including dust, dirt, and moisture. These contaminants can enter the track bearings and cause accelerated wear, reduced performance, and potential failure. Regular maintenance and appropriate sealing measures are required to mitigate these challenges.

2. High-Temperature Environments:

In industries like metal processing, glass manufacturing, and foundries, track bearings may be exposed to high temperatures. Excessive heat can affect the lubrication properties and structural integrity of bearings, leading to premature failure. Selecting track bearings specifically designed for high-temperature applications and using suitable lubricants are necessary to overcome this limitation.

3. Corrosive Chemicals:

Industries such as chemical processing, food and beverage, and wastewater treatment involve exposure to corrosive chemicals. Corrosion can significantly affect the performance and lifespan of track bearings. Choosing bearings made from corrosion-resistant materials or applying protective coatings can help address this challenge.

4. Heavy Load and Impact:

Industries like material handling, mining, and construction often require track bearings to withstand heavy loads and frequent impacts. Excessive load or impact can lead to premature wear, deformation, or even catastrophic failure of the bearings. Selecting track bearings with appropriate load capacities and impact resistance is crucial in these industries.

5. Precision and Accuracy:

In industries such as robotics, semiconductor manufacturing, and precision machining, track bearings may need to meet stringent requirements for precision and accuracy. Any deviation or play in the bearings can impact the overall performance and quality of the process. Using high-precision track bearings and ensuring proper alignment and installation are essential in these cases.

6. Speed and Acceleration:

Applications involving high-speed or rapid acceleration, such as automated assembly lines or conveyor systems, can impose additional challenges on track bearings. Excessive speed or acceleration can generate heat and vibration, leading to increased wear and reduced bearing life. Choosing track bearings with suitable speed and acceleration ratings is vital in these industries.

It is important to consult with bearing manufacturers or industry experts to identify and address any potential challenges or limitations specific to the industry and application at hand. By understanding these challenges and selecting track bearings designed to overcome them, industries can optimize performance, reliability, and longevity while mitigating risks and ensuring smooth operation.

track bearing

Can you explain the different types of track bearings used in industrial and mechanical systems?

Track bearings, also known as track rollers or track follower bearings, come in various types to suit different industrial and mechanical system requirements. Let’s explore the different types of track bearings commonly used in these applications:

  • Yoke Type Track Rollers: Yoke type track rollers are a popular type of track bearing characterized by their thick outer rings. They are designed to handle high radial loads and moderate axial loads. Yoke type track rollers feature an inner ring with a stud for mounting on a shaft or stud. They are widely used in applications such as conveyors, cam mechanisms, material handling systems, and agricultural machinery.
  • Stud Type Track Rollers: Stud type track rollers are similar to yoke type track rollers but lack an inner ring. Instead, they have a stud that serves as the mounting component. Stud type track rollers are suitable for applications with limited space or where the outer ring can be directly mounted onto a mating surface. They are commonly used in applications such as cam mechanisms, indexing equipment, and tensioning systems.
  • Cam Followers: Cam followers, also known as cam bearings or track followers, are track bearings designed specifically for cam-driven systems. They have a stud or shaft for mounting and a built-in roller or needle bearing. Cam followers follow the profile of a cam, converting the rotary motion of the cam into linear or oscillating motion. They are used in applications such as printing presses, packaging machinery, textile machinery, and automotive engines.
  • Guiding Track Rollers: Guiding track rollers are track bearings designed to provide precise and guided linear motion. They feature a thick outer ring with a track or guide surface. Guiding track rollers are commonly used in material handling systems, conveyor systems, and automated machinery to facilitate smooth and controlled movement along a track or guide rail.
  • V-Groove Track Rollers: V-groove track rollers have a specialized V-shaped groove on the outer ring. This groove allows the rollers to run on V-shaped tracks or rails, providing accurate alignment and guidance. V-groove track rollers are used in applications such as track systems, sliding gates, and linear motion guides.
  • Flanged Track Rollers: Flanged track rollers feature an additional flange on the outer ring. The flange helps in axial guidance and prevents the track roller from shifting or tilting under axial loads. Flanged track rollers are commonly used in applications such as cam mechanisms, linear motion systems, and conveyor systems.
  • Idler Track Rollers: Idler track rollers are non-powered track rollers used to support and guide conveyor belts, chains, or other moving components. They are typically used in material handling systems, conveyor systems, and packaging machinery.

These different types of track bearings offer versatility and flexibility in industrial and mechanical systems. Depending on the specific application requirements, engineers and designers can select the most suitable type of track bearing to ensure smooth motion, reliable operation, and efficient load support. The choice of track bearing type depends on factors such as load capacity, space constraints, track configuration, and environmental conditions.

China supplier Cam Follower Track Roller Bearing Kr19   connecting rod bearingChina supplier Cam Follower Track Roller Bearing Kr19   connecting rod bearing
editor by CX 2024-04-12

Recent Posts