China Custom Kr 30 Track Roller Cam Follower Krve Series Needle Bearing bearing bronze

Product Description

 

KR 30 Track Roller Cam Follower KR series Needle Bearing

Description of KR30 Track Roller Cam Follower KR series Needle Bearing

Series Description
NATR Yoke type track rollers with axial guidance by washers,gap seal,with inner ring
NATR…PP Yoke type track rollers with additional sealing rings
NATV Yoke type track rollers with axial guidance by washers,full complement,gap seal,with inner ring
NATV…PP Yoke type track rollers with additional sealing rings
NUTR Yoke type track rollers with axial guidance by the rolling element,full complement,gap seal,with inner ring
KR Stud type track rollers with axial guidance by rid and washer,gap seal
KR…PP Stud type track rollers with sealing rings
KRE Stud type track rollers with eccentric collar
KRE…PP Stud type track rollers with eccentric collar and sealing rings
KRV Stud type track rollers with axial guidance by rid and washer,full complement, gap seal
KRV…PP Stud type track rollers with sealing rings
KRVE Stud type track rollers with eccentric collar
KRVE…PP Stud type track rollers with eccentric collar and sealing rings
NUKR Stud type track rollers with axial guidance by the rolling element,full complement, gap seals
NUKRE Stud type track rollers with eccentric collar
CF Stud type track rollers with cage ,the same as KR series

 
Catalogue of
30 Track Roller Cam Follower KR series Needle Bearing

Outside 

Diameter

Bearing Designation and mass approx Borndary Dimensions

Without 

Eccentric 

Collar

 Mass

With 

Ecctric 

Coollar

 Mass D d C B B1 B2 G G1 M M1 C1 d2
mm   g   g mm
47 KR 47 386 KRE 47 405.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KR 47 PP 386 KRE 47 PP 405.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KRV 47 390 KRVE 47 409.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KRV 47 PP 390 KRVE 47 PP 409.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
NUKR 47 380 NUKPE 47 399.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 27
52 KR 52 461 KRE 40 480.5 52 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KR 52 PP 461 KRE 52 PP 480.5 52 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KRV 52 465 KRVE 52 484.5 52 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KRV 52 PP 465 KRVE 52 PP 484.5 52 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
NUKR 52 450 NUKPE 52 469.5 52 20 24 66 49.5 9 M20×1.5 21 8 4 0.8 31
62 KR 62 790 KRE 62 818.2 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KR 62 PP 790 KRE 62 PP 818.2 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KRV 62 802 KRVE 62 830.2 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KRV 62 PP 802 KRVE 62 PP 830.2 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
NUKR 62 795 NUKPE 62 823.5 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 38
72 KR 72 1040 KRE 72 1068.2 72 24 29 80 49.5 11 M20×1.5 25 8 4 0.8 44
KR 72 PP 1040 KRE 72 PP 1068.2 72 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KRV 72 1045 KRVE 72 1073.2 72 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KRV 72 PP 1045 KRVE 72 PP 1073.2 72 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
NUKR 72 1200 NUKPE 72 1038.2 72 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
80 KR 80 1550 KRE 80 1610 80 30 35 100 63 15 M30×1.5 32 8 4 1 53
KR 80 PP 1550 KRE 80 PP 1610 80 30 35 100 63 15 M30×1.5 32 8 4 1 53
KRV 80 1561 KRVE 80 1621 80 30 35 100 63 15 M30×1.5 32 8 4 1 53
KRV 80 PP 1561 KRVE 80 PP 1621 80 30 35 100 63 15 M30×1.5 32 8 4 1 53
NUKR 80 1800 NUKPE 80 1600 80 30 35 100 63 15 M30×1.5 32 8 4 1 47
85 KR 85 1740 KRE 85 1800 85 30 35 100 63 15 M30×1.5 32 8 4 1 53
KR 85 PP 1740 KRE 85 PP 1800 85 30 35 100 63 15 M30×1.5 32 8 4 1 53
90 KR 90 1950 KRE 90 2571 90 30 35 100 63 15 M30×1.5 32 8 4 1 53
KR 90 PP 1950 KRE 90 PP 2571 90 30 35 100 63 15 M30×1.5 32 8 4 1 53
KRV 90 1970 KRVE 90 2030 90 30 35 100 63 15 M30×1.5 32 8 4 1 53
KRV 90 PP 1970 KRVE 90 PP 2030 90 30 35 100 63 15 M30×1.5 32 8 4 1 53
NUKR 90 2300 NUKPE 90 2571 90 30 35 100 63 15 M30×1.5 32 8 4 1 47

Pictures 

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Cam Follower Bearings
Bore Diameter: 12mm
Outer Diameter: 92.5g
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

track bearing

What are the considerations for selecting the right track bearings for a particular application?

Selecting the right track bearings for a particular application requires careful consideration of various factors to ensure optimal performance, reliability, and longevity. Here are the key considerations to keep in mind:

  • Load Requirements: Assess the expected load conditions in the application. Consider both the static and dynamic loads that the track bearings will need to support. Determine the maximum load capacity required to ensure that the selected bearings can handle the anticipated loads without premature failure or excessive wear.
  • Speed and Acceleration: Evaluate the speed and acceleration requirements of the application. Higher speeds and rapid accelerations can impose additional stresses on the track bearings. Choose bearings with suitable speed and acceleration ratings to ensure they can operate effectively within the desired range without compromising performance or causing premature wear.
  • Environmental Factors: Consider the operating environment of the application. Evaluate factors such as temperature extremes, moisture, dust, chemicals, and potential exposure to corrosive substances. Select track bearings that are designed to withstand the specific environmental conditions to ensure optimal performance and longevity.
  • Track and Rail Compatibility: Assess the compatibility of the track bearings with the existing track or rail system. Consider factors such as track geometry, dimensional requirements, and mounting options. Ensure that the selected bearings are suitable for the specific track or rail design to facilitate proper installation, alignment, and smooth operation.
  • Maintenance and Lubrication: Evaluate the maintenance and lubrication requirements of the track bearings. Consider factors such as the need for regular maintenance, lubrication intervals, and the availability of suitable lubricants. Choose bearings that align with the desired maintenance practices and provide appropriate lubrication options based on the application’s operational demands.
  • Expected Lifespan and Reliability: Determine the desired lifespan and reliability expectations for the track bearings. Consider factors such as the projected operating hours, duty cycles, and the criticality of the application. Select bearings from reputable manufacturers known for producing high-quality, reliable products that align with the expected lifespan and reliability requirements.
  • Cost Considerations: Evaluate the cost-effectiveness of the track bearings. Consider the initial purchase cost as well as the long-term costs associated with maintenance, replacement, and potential downtime. Strive for a balance between the upfront investment and the overall value provided by the bearings in terms of performance, reliability, and longevity.

It is essential to consult with bearing manufacturers or industry experts who can provide guidance and recommendations based on the specific application requirements. By considering these factors and seeking expert advice, you can select the right track bearings that best meet the needs of your particular application.

track bearing

What innovations or advancements have been made in track bearing technology?

Track bearing technology has seen several innovations and advancements over the years, driven by the need for improved performance, increased reliability, and enhanced functionality. Here are some notable innovations in track bearing technology:

  • Advanced Materials: The development of new materials has significantly improved the performance and longevity of track bearings. Materials such as ceramic, hybrid ceramics, and high-performance steels offer enhanced strength, corrosion resistance, and temperature stability, making them suitable for demanding applications.
  • Improved Sealing Solutions: Sealing technology has advanced to provide better protection against contaminants, moisture, and other environmental factors. Innovative seal designs and materials, including labyrinth seals, triple lip seals, and specialized coatings, help keep track bearings clean and extend their service life.
  • Enhanced Lubrication: Lubrication plays a crucial role in the performance and lifespan of track bearings. Advancements in lubrication technology, such as the development of high-performance greases and solid lubricants, have improved the efficiency, reliability, and maintenance requirements of track bearings.
  • Integrated Sensor Systems: Track bearings can now incorporate integrated sensor systems to monitor various parameters such as temperature, vibration, and load. These sensors provide real-time data on bearing health and performance, enabling predictive maintenance strategies and early detection of potential issues.
  • Smart Bearing Technology: Smart bearing technology combines sensor systems with advanced data analytics and connectivity capabilities. These bearings can communicate wirelessly with monitoring systems, enabling remote monitoring, condition-based maintenance, and optimization of operational parameters for improved performance and efficiency.
  • Design Optimization: Computer-aided design (CAD) and finite element analysis (FEA) tools have revolutionized the design process for track bearings. These tools allow for precise modeling, simulation, and optimization of bearing geometries, materials, and load capacities, resulting in improved performance, reduced weight, and enhanced reliability.
  • Application-Specific Customization: With advancements in manufacturing processes, track bearings can now be customized to meet the specific requirements of different applications. Manufacturers can tailor bearing designs, materials, and coatings to optimize performance, reliability, and compatibility with unique operating conditions.

These innovations and advancements in track bearing technology have collectively contributed to improved performance, extended service life, and enhanced functionality in a wide range of industries and applications. They continue to drive progress in the field, enabling track bearings to meet the evolving demands of modern industrial systems.

track bearing

What are track bearings, and how are they used in various applications?

Track bearings, also known as track rollers or track follower bearings, are specialized rolling bearings designed to operate in track-based systems. They are used in various applications that require guided linear or rotational motion. Let’s explore in detail the characteristics of track bearings and their common applications:

  • Design and Construction: Track bearings typically consist of an outer ring, an inner ring, a set of rolling elements (such as rollers or needles), and a cage that holds the rolling elements together. The outer ring features a track or guide surface, while the inner ring is mounted on a shaft or stud. The rolling elements facilitate smooth rolling motion along the track, allowing for linear or rotational movement.
  • Guided Motion: Track bearings are primarily used to provide guided motion in applications where components need to move along a defined path or track. The outer ring’s track surface interfaces with the track or guide rail, ensuring precise and controlled motion. This guided motion is crucial in various applications such as material handling systems, conveyors, cam mechanisms, and automated machinery.
  • Load Support: Track bearings are designed to support and distribute loads, both radial and axial, in track-based systems. They can handle substantial loads while maintaining smooth motion and minimizing friction. The load-carrying capacity of track bearings makes them suitable for applications involving heavy loads, such as construction equipment, agricultural machinery, and industrial automation systems.
  • Multiple Types: Track bearings come in various types to suit different application requirements. Some common types include yoke type track rollers, stud type track rollers, and cam followers. Yoke type track rollers have thick outer rings and can withstand high radial loads. Stud type track rollers have a stud instead of an inner ring and are suitable for applications with limited space. Cam followers have a stud with a built-in roller and are commonly used in cam-driven systems.
  • Sealing and Contamination Protection: In many applications, track bearings are exposed to harsh environments and contaminants. To ensure reliable operation, track bearings often incorporate sealing arrangements or protective coatings. These features help prevent the ingress of dust, dirt, moisture, or other contaminants, prolonging the bearing’s service life and reducing the risk of premature failure.
  • Various Applications: Track bearings find applications in a wide range of industries and systems. Some common applications include:
    • Material Handling Systems: Track bearings are used in conveyors, roller tracks, and overhead cranes to facilitate smooth and guided movement of materials.
    • Automated Machinery: Track bearings are employed in automated machines and robotic systems for precise motion control and positioning.
    • Cam Mechanisms: Track bearings are utilized in cam-driven systems, where they follow the profile of the cam and translate the rotary motion into linear or oscillating motion.
    • Construction Equipment: Track bearings are found in construction machinery, such as excavators, bulldozers, and compactors, to support the tracks or guide wheels.
    • Agricultural Machinery: Track bearings are used in agricultural equipment, including tractors, combines, and harvesters, to support the tracks or guide wheels and provide reliable movement.
    • Printing and Packaging Machinery: Track bearings are employed in printing presses, packaging machines, and labeling systems to ensure precise and guided movement of the printing heads, packaging materials, or labels.

In summary, track bearings are specialized rolling bearings designed for guided linear or rotational motion along a track or guide rail. They provide precise motion control, support substantial loads, and find applications in various industries such as material handling, automation, construction, agriculture, printing, and packaging. With their ability to facilitate guided motion and handle significant loads, track bearings contribute to the smooth and reliable operation of track-based systems in a wide range of applications.

China Custom Kr 30 Track Roller Cam Follower Krve Series Needle Bearing   bearing bronzeChina Custom Kr 30 Track Roller Cam Follower Krve Series Needle Bearing   bearing bronze
editor by CX 2024-01-09

Recent Posts